/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Compositional Design Principles

/v Gang of Four (GoF)

AARHUS UNIVERSITET

>

Erich Gamma, Richard Helm .
Ralph Johnson & John Vlissides DﬁSlgﬂ Pattems

Elements of Reusable
Objectl-Oriented Software

O¥d AFTSIV NOSIOAY

Design Patterns — Elements of Frich Gamina
. . JCMEre elm

Reusable Object-Oriented Software lRahrph \'}I{Jhﬁéﬁn
John Viissides

Addison-Wesley, 1995.
(As CD, 1998)

-
.
¥
W
.
=
=1
e
=
A
]
m
=
e

First systematic software pattern
description.

CS@AU Henrik Baerbak Christensen 2

/v The most important chapter

AARHUS UNIVERSITET
 Section 1.6 of GoF has a section called:

« How design patterns solve design problems
« This section Is the gold nugget section

It ties the patterns to the underlying coding principles that
delivers the real power.

/v Compositional Design Principles

AARHUS UNIVERSITET

Compositional Design Principles:
@ Program to an interface, not an implementation.
@ Favor object composition over class inheritance.

@ Consider what should be variable in your design.

(or: Encapsulate the behavior that varies.)

CS@AU Henrik Baerbak Christensen 4

/v As the 3-1-2 process

AARHUS UNIVERSITET

CS@AU

@ [identified some behavior that
was likely to change. ..

@ | stated a well-defined respon-
sibility that covers this behavior
and expressed it in an interface. ..

@ Instead of implementing the be-
havior ourselves I delegated to
an object implementing the inter-
face. ..

@ Consider what should be variable
in your design.

@ Program to an interface, not an im-

plementation.

@ Favor object composition over class
imheritance.

Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET

First Principle

CS@AU Henrik Baerbak Christensen

/v GoF’s 1st principle

AARHUS UNIVERSITET
* Program to an interface, not an implementation

«interface»
ServiceProvider

Client

* In other words
« Assume only the role
* (the responsibilities + protocol)

« ... and never allow yourself to be coupled to
Implementation details and concrete behavior

CS@AU Henrik Baerbak Christensen 7

/v First Principle

AARHUS UNIVERSITET

* Program to an interface because
— You only collaborate with the role — not an individual object

— You are free to use any service provider class!
* Any class that implements that interface...

— You do not delimit other developers for providing their service
provider class!

— You avoid binding others to a particular inheritance hierarchy
« Which you would do if you use (abstract) classes...

/v Example

AARHUS UNIVERSITET
« Early pay station GUI used JLabel for visual output

ublic class ParkingMachineGUI extends JFrams

E el - N . L || Parking Machine (c} Imh... [=N ﬁj
JLabkel displav:s
i Machin

Mant
lachine; indkast

1 kr

28 2 kr

5 Kr

| only use method: 'setText() ™
BTN

public woid updateDisplavy ()
disElay.setIext{ ""iparkingMachine.readDisplay ()) »
}

CS@AU Henrik Baerbak Christensen 9

/v Example

AARHUS UNIVERSITET

« The | found SoftCollection’s number display, got
permission to use it, but...

public class ParkingMachineGUI extends JFrams |

L) PayStation GUI | e ol=le ef e

Wariant Selection

"digital display
ICDDigitDisplay displav:
, domain pay static
PayStation pavStatlicn:

... And use:

Leadings are shown */

e gul interacts with */

F** Update the digital display with whatewver the
pay station domain shows */f
private void updateDisplavi() {
String prefixedfercs =
String.format{"%44", payStation.readDisplav{))
displav.setText{ prefixediZerocs);

}

CS@AU Henrik Baerbak Christensen 10

VeV Morale

AARHUS UNIVERSITET

It would have been easy to make the code completely
identical, and thus support full reuse, in which | simply
configure PayStationGUI with the proper "text panel’ to
use.

« Butlcannot!
— Because LCDDigitDisplay does not inherit JLabel!!!

* Thus instead of dependency injection and change by
addition | get

« Change by modification
— | have to start my editor just to change one declaration!
— | can never get a framework out of this!

/v

eusuversrer | oould have been solved...

e |f JLabel was an
Interface instead!

— Interface “IJLabel’ GUI IJLabel Liiﬂi‘izsplay
— setText(String s); | ‘i” "= /
oo R pe—
« Then there would be ~ MyLCDDigitDisplay

no hard Coupllng to a ConcreteéerviceA ConcreteServiceB
specific inheritance
hierarchy.

/v Interfaces allow fine-grained behavioral

AARHUS UNIVERSITET abstractions

* Clients can be very specific about the exact responsibility
It requires from its service provider — Role interfaces

SOLID : | = Interface Segregation

 Example:
— Collections.sort(List<T> list)

public static «<T extends Comparable<? super T>> wvoid sort(List<T> list)

— can sort a list of objects of any type, T, if each object implements
the interface Comparable<? super T>

— i.e. must implement method ‘int compareTo(T o).

 Low coupling —no irrelevant method dependency!

CS@AU Henrik Baerbak Christensen 13

/v Interfaces better express roles

AARHUS UNIVERSITET

 Interfaces express specific responsibilities whereas
classes express concepts. Concepts usually include
more responsibilities and they become broader!

public interface Drawing extends
FigureCollection, SelectionHandler,
FigureChangelListener, DrawingChangelListenerHandler {

« Small, very well defined, roles are easier to reuse as you
do not get all the “stuff you do not need...”

public class CompositionalDrawing implements Drawing {
public CompositionalDrawing() {
selectionHandler = new StandardSelectionHandler();
listenerHandler = new StandardDrawingChangelistenerHandler();
figureChangelListener = new ForwardingFigureChangeHandler(source: this, listenerHandler);

figureCollection = new StandardFigureCollection(figureChangelListener);
CS@AU }

/v

AARHUS UNIVERSITET

CS@AU

Second Principle

Henrik Baerbak Christensen

15

Y GoF’s 2nd principle

AARHUS UNIVERSITET
« Favor object composition over class inheritance

« What this statement says is that there are basically two
ways to reuse code in OO!

And the compositional one should be favored!

ExistingService / EXistingService1
NewService)
q\:\
EXistingService2
NewService
a) b)

CS@AU Henrik Baerbak Christensen 16

eV Benefits of class inheritance

AARHUS UNIVERSITET
e Class inheritance

— You get the “whole packet” and “tweak a bit” by overriding a
single or few methods

» Fast and easy (very little typing!)

» Explicit in the code, supported by language
— (you can directly write “extends”)

« But...

eV Encapsulation
AARHUS UNIVERSITET

“Inheritance breaks encapsulation”

« Snyder (1986)

/v Why?
AARHUS UNIVERSITET
* No encapsulation because

— Subclass can access every...
* instance variable/property
 data structure
* Method

— ... of any superclass (except those declared private)

« Thus a subclass and superclass are tightly coupled

— You cannot change the root class’ data structure without
refactoring every subclass in the complete hierarchy ®

eV Only add responsibilities, never remove
AARHUS UNIVERSITET

* You buy the full package!
— All methods, all data structures
— Even those that are irrelevant or down right wrong!

Y Example

AARHUS UNIVERSITET

* Vector<k> (= an ArrayList ‘almost’)

— void add(int index, E element) public class Stack<E>
extends Vector<E>

o Stack<E> extends Vector<E>
_ E pop() Vector
— void push(E item) fiﬁ
Stack

Argue why this is a design with many liabilities?

How can you rewrite it elegantly using composition?
CS@AU Henrik Beerbak Christensen 21

/v

Rewriting to Composition

AARHUS UNIVERSITET
e (Class ‘Stack has-a Vector’, instead of ‘Stack is-a Vector’

== Stack has-a

Popped value Ll]
Popped value (2)

CS@AU

limport java.util.*;

Much better design!
public class StackHasAVector {
° Stack does not have any public static void maln(Strlng[] args} {

System.out.println("== 5t vector =="):

Vector/List methods, only stack s

s.push{"Item 1");
. h tem 2");
pUSh() and pop() EEE:hE Item 3 :;
System.out.println(" Popped value (1 + s.pop());
System.out.println(" Popped value (2 + s.pop());
}
}

new Stack();

$ java StackHasAVector

ector == class Stack {

= Item{j // has-a vector (here ArraylList)
= ltem 2 private List<String> contents = new ArraylList<String=();

public void push(String item) {
contents.add(o, item);

}

public String pop() {
return contents.remove(}}
}
}

Henrik Baerbak Christensen 22

/v Compile time binding

AARHUS UNIVERSITET

The only way to change behavior in the future (tweak a
bit more) is through the edit-compile-debug-debug-
debug-debug cycle

[import java.util.*;

public class StackHasAVector {
public static void main(String[] args) {
. System.out.println(”== Stack has-a vector =="};
Stack s = new Stack();

s.push("Item 1");
s.push("Item 2");

Any implementing class of s.push("Iten 3):
8 8 8 System.out.println(” Popped value (1) = " + s.pop());
List<String> can be substituted system.out.println(* Popped value (2) - * + s.pop()):

}
}

here (by Dependency Injection),
thus no hard COUp“ng between \1775h:§:kvictnr (here ArrayList)

StaCk and llVeCtorn private List<String> contents = new ArrayList<String=();

public wvoid push(String item) {
contents.add(o, item);
}

public String pop() {
return contents.remove(Q);
1
1

CS@AU Henrik Beerbak Christensen

23

/v

AARHUS UNIVERSITET

Recurring modifications

« Constantly bubbling of behavior up into the root class in a

hierarchy

— Review the analysis in the State pattern chapter

* Another example

— Nice service based upon ArrayList
* Now — want better performance in new variant

— All three classes
modified &

Client

Service

== ArrayList<ltem>

Client

AbsrtractService

doThings()

doThings()

/]
.'l
!

Service

NewsService

ArrayList<ltem>

TreeMap<K, ltem=>

doThings()

doThings()

b)

/v Separate Testing

AARHUS UNIVERSITET

 Often, small and well focused abstractions are easier to
test than large classes

ExistingService - ExistingService1

S

—

L" NewService

| ExistingService2
NewService

a) b)

— a) Only integration testing possible (NewS. + EXistS.)

— b) Allows unit testing of ‘ExistingService1+2’,
and often unit testing of NewService, by replacing collaborators
with Test Stubs ala StubServicel and StubService2

/v Increase possibility of reuse

AARHUS UNIVERSITET

« Smaller implementations are easier to reuse
« Example from MiniDraw

Drawing

e Be a collection of figures.

e Allow figures to be added and removed.

selection.

e MVamtaln a temporary, possibly emptly, subset of all figures, called a

— Sub responsibility

d0verride

public Figure add(Figure figure) { return figureCollection.add(figure); }

d0verride

public Figure remove(Figure figure)

{ return figureCollection.remove(figure);

« Allow compositional reuse of FigureCollection in all
present and future impl. of Drawing!

CS@AU

Henrik Baerbak Christensen

}

26

/v Liabilities

AARHUS UNIVERSITET
* Increased number of abstractions and objects ®

public CompositionalDrawing() {
selectionHandler = new StandardSelectionHandler();
listenerHandler = new StandardDrawingChangelistenerHandler();
figureChangelistener = new ForwardingFigureChangeHandler(source: this, listenerHandler);
figureCollection = new StandardFigureCollection(figureChangelistener);

}

« Delegation requires more boiler-plate code ®

——= Naelenate +n the Finure cnlleactior
=== Ucdilcyale LU Lhe JTi1ygure colicec Lo

Henrik Baerbak Christensen
@0verride

public Figure add(Figure figure) { return figureCollection.add(figure);

Henrik Basrbak Christensen

@0verride

}

public Figure remove(Figure figure) { return figureCollection.remove(figure); }

CS@AU Henrik Baerbak Christensen

27

/v

AARHUS UNIVERSITET

* Inheritance Is an interesting construct, but

(what Is he saying???)

— It often leads to lesser designs ®

It does not elegantly handle
— ad hoc reuse
— modelling roles
— variance of behavior

&

AN

A

2\

4

O~ %\

4

Dactar

NV

CS@AU

Henrik Baerbak Christensen

28

eV When to use Inheritance?

AARHUS UNIVERSITET

* My rule of thumb

— Iff there is behavioral differences between subclasses
» Not just parameters and constants; it must be different algorithms

— Iff you are absolutely sure there will be only one dimension of
variability and a shallow inheritance tree...

 Often | later find | can rewrite inheritance...

_ E2023 public abstract class hutStuneActurFigure extends CompositeFigure

implements HotStoneFiaure J
public class CardFigure extends HotStoneActorFigure

'public clLass hiniunFigure extends HotStoneActorFigure {

— E2024

public class CardFigure extends CompositeFigure

implements HotStoneFigure {

« Gfx rendering difference is just a set of
parameters... See slides in Week 9 ©...

CS@AU Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET

CS@AU

Third Principle

Henrik Baerbak Christensen

30

/v GoF’s 3rd principle

AARHUS UNIVERSITET

« Consider what should be variable in your

design
[GoF §1.8, p.29]

« Another way of expressing the 3rd principle:
* Encapsulate the behavior that varies

CS@AU Henrik Baerbak Christensen 31

/v Analysis

AARHUS UNIVERSITET
« This statement is closely linked to the shorter
« Change by addition, not by modification
« That is — you identify
— the design/code that should remain stable
— the design/code that may vary

« and use techniques that ensure that the stable part — well
— remain stable

* These techniques are 1st and 2nd principle
— most of the time ©

CS@AU Henrik Baerbak Christensen 32

/v

AARHUS UNIVERSITET

The Principles In Action

CS@AU Henrik Baerbak Christensen

33

eV Principles in action

AARHUS UNIVERSITET

« Applying the principles lead to basically the same
structure of most patterns:
— New requirement to our client code

Client

/v

AARHUS UNIVERSITET

« Applying the principles lead to basically the same

Principles in action

structure of most patterns:

@ Consider what should be variable

Client

CS@AU

Variability

Henrik Baerbak Christensen

35

/v

AARHUS UNIVERSITET

« Applying the principles lead to basically the same

Principles in action

structure of most patterns:

« O Program to an interface

Client

CS@AU

«interface»
Variability

Henrik Baerbak Christensen

36

eV Principles in action

AARHUS UNIVERSITET

« Applying the principles lead to basically the same

structure of most patterns:

« @ Favor object composition

Client K

-
—
—
—
——
—
—

«interface»

ConcreteVariationl

Variability
a

ConcreteVariation2

/v And that is why...

AARHUS UNIVERSITET

* ... most patterns follows this structure exactly
— They encapsulate variability and favor composition

«interface»
Variability
AN

Client K

ConcreteVariationl ConcreteVariation2

/v

AARHUS UNIVERSITET

® We identified some
behaviour that was likely to
change...

@® We stated a well defined
responsibility that covers this
behaviour and expressed it in
an interface

@ Instead of performing
behaviour ourselves we
delegated to an object
Implementing the interface

Summary

® Consider what should be
variable in your design

@® Program to an interface, not
an implementation

@ Favor object composition
over class inheritance

VeV SOLID

AARHUS UNIVERSITET

« A more well known set of principles than®® @, but states
more or less the same...

S The single-responsibility principle: "There should never be more than one rea-
son for a class to change." That is, encapsulate behavior in well-defined and
fine-grained roles; encapsulate what varies.

O The open—closed principle: "Software entities ... should be open for extension,
but closed for modification." That is, favor change by addition.

L The Liskov substitution principle: "Functions that use pointers or references to
base classes must be able to use objects of derived classes without knowing it."
That is, program to an interface.

[The interface segregation principle: "Many client-specific interfaces are bet-
ter than one general-purpose interface.” That is, express behavior using fine-
grained roles.

D The dependency inversion principle: "Depend upon abstractions, [not] concre-
tions." That is, program to an interface, and favor object composition by depen-

dency injection.

CS@AU Henrik Baerbak Christensen 40

/v SOLID is Solid

AARHUS UNIVERSITET
« An architectural style for large systems: Microservices
— Key architecture for Uber, Google, NetFlix, ...

« Lots of tooling, lots of architectural tactics, lots of design
doctrines to follow, but... Scale: Deployment

Builds / week Production deploys /

e Atthe core, itis..
— Design with high cohesion and low coupling
— Design according to SOLID
— Program to an interface, favor object composition

CS@AU Henrik Baerbak Christensen 41

