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First systematic software pattern
description.
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/v The most important chapter

AARHUS UNIVERSITET
 Section 1.6 of GoF has a section called:

« How design patterns solve design problems
« This section Is the gold nugget section

It ties the patterns to the underlying coding principles that
delivers the real power.



/v Compositional Design Principles
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Compositional Design Principles:
@ Program to an interface, not an implementation.
@ Favor object composition over class inheritance.

@ Consider what should be variable in your design.

(or: Encapsulate the behavior that varies.)
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/v As the 3-1-2 process
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@ [ identified some behavior that
was likely to change. ..

@ | stated a well-defined respon-
sibility that covers this behavior
and expressed it in an interface. ..

@ Instead of implementing the be-
havior ourselves I delegated to
an object implementing the inter-
face. ..

@ Consider what should be variable
in your design.

@ Program to an interface, not an im-

plementation.

@ Favor object composition over class
imheritance.

Henrik Baerbak Christensen
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First Principle
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/v GoF’s 1st principle
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* Program to an interface, not an implementation

«interface»
ServiceProvider

Client

* In other words
« Assume only the role
* (the responsibilities + protocol)

« ... and never allow yourself to be coupled to
Implementation details and concrete behavior
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/v First Principle
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* Program to an interface because
— You only collaborate with the role — not an individual object

— You are free to use any service provider class!
* Any class that implements that interface...

— You do not delimit other developers for providing their service
provider class!

— You avoid binding others to a particular inheritance hierarchy
« Which you would do if you use (abstract) classes...



/v Example
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« Early pay station GUI used JLabel for visual output

ublic class ParkingMachineGUI extends JFrams

E el - N . L || Parking Machine (c} Imh... [ =N ﬁj
JLabkel displav:s
i Machin

Mant
lachine; indkast

1 kr

28 2 kr

5 Kr

| only use method: 'setText() ™
BTN

public woid updateDisplavy ()
disElay.setIext{ ""iparkingMachine.readDisplay () ) »
}
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/v Example
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« The | found SoftCollection’s number display, got
permission to use it, but...

public class ParkingMachineGUI extends JFrams |

L) PayStation GUI | e ol=le ef e

Wariant Selection

"digital display
ICDDigitDisplay displav:
, domain pay static
PayStation pavStatlicn:

... And use:

Leadings are shown */

e gul interacts with */

F** Update the digital display with whatewver the
pay station domain shows */f
private void updateDisplavi() {
String prefixedfercs =
String.format{"%44", payStation.readDisplav{) )
displav.setText{ prefixediZerocs );

}
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VeV Morale
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It would have been easy to make the code completely
identical, and thus support full reuse, in which | simply
configure PayStationGUI with the proper "text panel’ to
use.

« Butlcannot!
— Because LCDDigitDisplay does not inherit JLabel!!!

* Thus instead of dependency injection and change by
addition | get

« Change by modification
— | have to start my editor just to change one declaration!
— | can never get a framework out of this!



/v

eusuversrer | oould have been solved...

e |f JLabel was an
Interface instead!

— Interface “IJLabel’ GUI IJLabel Liiﬂi‘izsplay
— setText(String s); | ‘i” "= /
oo R pe—
« Then there would be ~ MyLCDDigitDisplay

no hard Coupllng to a ConcreteéerviceA ConcreteServiceB
specific inheritance
hierarchy.




/v Interfaces allow fine-grained behavioral

AARHUS UNIVERSITET abstractions

* Clients can be very specific about the exact responsibility
It requires from its service provider — Role interfaces

SOLID : | = Interface Segregation

 Example:
— Collections.sort(List<T> list)

public static «<T extends Comparable<? super T>> wvoid sort(List<T> list)

— can sort a list of objects of any type, T, if each object implements
the interface Comparable<? super T>

— i.e. must implement method ‘int compareTo(T o).

 Low coupling —no irrelevant method dependency!

CS@AU Henrik Baerbak Christensen 13



/v Interfaces better express roles
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 Interfaces express specific responsibilities whereas
classes express concepts. Concepts usually include
more responsibilities and they become broader!

public interface Drawing extends
FigureCollection, SelectionHandler,
FigureChangelListener, DrawingChangelListenerHandler {

« Small, very well defined, roles are easier to reuse as you
do not get all the “stuff you do not need...”

public class CompositionalDrawing implements Drawing {
public CompositionalDrawing() {
selectionHandler = new StandardSelectionHandler();
listenerHandler = new StandardDrawingChangelistenerHandler();
figureChangelListener = new ForwardingFigureChangeHandler( source: this, listenerHandler);

figureCollection = new StandardFigureCollection(figureChangelListener);
CS@AU }
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Second Principle
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Y GoF’s 2nd principle
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« Favor object composition over class inheritance

« What this statement says is that there are basically two
ways to reuse code in OO!

And the compositional one should be favored!

ExistingService / EXistingService1
NewService )
q\:\
EXistingService2
NewService
a) b)
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eV Benefits of class inheritance
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e Class inheritance

— You get the “whole packet” and “tweak a bit” by overriding a
single or few methods

» Fast and easy (very little typing!)

» Explicit in the code, supported by language
— (you can directly write “extends”)

« But...



eV Encapsulation
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“Inheritance breaks encapsulation”

« Snyder (1986)



/v Why?
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* No encapsulation because

— Subclass can access every...
* instance variable/property
 data structure
* Method

— ... of any superclass (except those declared private)

« Thus a subclass and superclass are tightly coupled

— You cannot change the root class’ data structure without
refactoring every subclass in the complete hierarchy ®



eV Only add responsibilities, never remove
AARHUS UNIVERSITET

* You buy the full package!
— All methods, all data structures
— Even those that are irrelevant or down right wrong!



Y Example
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* Vector<k> (= an ArrayList ‘almost’)

— void add(int index, E element) public class Stack<E>
extends Vector<E>

o Stack<E> extends Vector<E>
_ E pop() Vector
— void push(E item) fiﬁ
Stack

Argue why this is a design with many liabilities?

How can you rewrite it elegantly using composition?
CS@AU Henrik Beerbak Christensen 21
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Rewriting to Composition
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e (Class ‘Stack has-a Vector’, instead of ‘Stack is-a Vector’

== Stack has-a

Popped value Ll]
Popped value (2)

CS@AU

limport java.util.*;

Much better design!
public class StackHasAVector {
° Stack does not have any public static void maln(Strlng[] args} {

System.out.println("== 5t vector =="):

Vector/List methods, only stack s

s.push{"Item 1");
. h tem 2");
pUSh() and pop() EEE:hE Item 3 :;
System.out.println(" Popped value (1 + s.pop());
System.out.println(" Popped value (2 + s.pop());
}
}

new Stack();

$ java StackHasAVector

ector == class Stack {

= Item{j // has-a vector (here ArraylList)
= ltem 2 private List<String> contents = new ArraylList<String=();

public void push(String item) {
contents.add(o, item);

}

public String pop() {
return contents.remove( }}
}
}

Henrik Baerbak Christensen 22



/v Compile time binding
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The only way to change behavior in the future (tweak a
bit more) is through the edit-compile-debug-debug-
debug-debug cycle

[import java.util.*;

public class StackHasAVector {
public static void main(String[] args) {
. System.out.println(”== Stack has-a vector =="};
Stack s = new Stack();

s.push("Item 1");
s.push("Item 2");

Any implementing class of s.push("Iten 3):
8 8 8 System.out.println(” Popped value (1) = " + s.pop());
List<String> can be substituted system.out.println(* Popped value (2) - * + s.pop()):

}
}

here (by Dependency Injection),
thus no hard COUp“ng between \1775h:§:kvictnr (here ArrayList)

StaCk and llVeCtorn private List<String> contents = new ArrayList<String=();

public wvoid push(String item) {
contents.add(o, item);
}

public String pop() {
return contents.remove(Q);
1
1

CS@AU Henrik Beerbak Christensen
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Recurring modifications

« Constantly bubbling of behavior up into the root class in a

hierarchy

— Review the analysis in the State pattern chapter

* Another example

— Nice service based upon ArrayList
* Now — want better performance in new variant

— All three classes
modified &

Client

Service

== ArrayList<ltem>

Client

AbsrtractService

doThings()

doThings()

/]
.'l
!

Service

NewsService

ArrayList<ltem>

TreeMap<K, ltem=>

doThings()

doThings()

b)




/v Separate Testing
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 Often, small and well focused abstractions are easier to
test than large classes

ExistingService - ExistingService1

S

—

L" NewService

| ExistingService2
NewService

a) b)

— a) Only integration testing possible (NewS. + EXistS.)

— b) Allows unit testing of ‘ExistingService1+2’,
and often unit testing of NewService, by replacing collaborators
with Test Stubs ala StubServicel and StubService2



/v Increase possibility of reuse
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« Smaller implementations are easier to reuse
« Example from MiniDraw

Drawing

e Be a collection of figures.

e Allow figures to be added and removed.

selection.

e MVamtaln a temporary, possibly emptly, subset of all figures, called a

— Sub responsibility

d0verride

public Figure add(Figure figure) { return figureCollection.add(figure); }

d0verride

public Figure remove(Figure figure)

{ return figureCollection.remove(figure);

« Allow compositional reuse of FigureCollection in all
present and future impl. of Drawing!

CS@AU
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/v Liabilities
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* Increased number of abstractions and objects ®

public CompositionalDrawing() {
selectionHandler = new StandardSelectionHandler();
listenerHandler = new StandardDrawingChangelistenerHandler();
figureChangelistener = new ForwardingFigureChangeHandler( source: this, listenerHandler);
figureCollection = new StandardFigureCollection(figureChangelistener);

}

« Delegation requires more boiler-plate code ®

——= Naelenate +n the Finure cnlleactior
=== Ucdilcyale LU Lhe JTi1ygure colicec Lo

Henrik Baerbak Christensen
@0verride

public Figure add(Figure figure) { return figureCollection.add(figure);

Henrik Basrbak Christensen

@0verride

}

public Figure remove(Figure figure) { return figureCollection.remove(figure); }

CS@AU Henrik Baerbak Christensen
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* Inheritance Is an interesting construct, but

(what Is he saying???)

— It often leads to lesser designs ®

It does not elegantly handle
— ad hoc reuse
— modelling roles
— variance of behavior

&
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Dactar

NV
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eV When to use Inheritance?
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* My rule of thumb

— Iff there is behavioral differences between subclasses
» Not just parameters and constants; it must be different algorithms

— Iff you are absolutely sure there will be only one dimension of
variability and a shallow inheritance tree...

 Often | later find | can rewrite inheritance...

_ E2023 public abstract class hutStuneActurFigure extends CompositeFigure

implements HotStoneFiaure J
public class CardFigure extends HotStoneActorFigure

'public clLass hiniunFigure extends HotStoneActorFigure {

— E2024

public class CardFigure extends CompositeFigure

implements HotStoneFigure {

« Gfx rendering difference is just a set of
parameters... See slides in Week 9 ©...

CS@AU Henrik Baerbak Christensen
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Third Principle
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/v GoF’s 3rd principle
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« Consider what should be variable in your

design
[GoF §1.8, p.29]

« Another way of expressing the 3rd principle:
* Encapsulate the behavior that varies

CS@AU Henrik Baerbak Christensen 31



/v Analysis
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« This statement is closely linked to the shorter
« Change by addition, not by modification
« That is — you identify
— the design/code that should remain stable
— the design/code that may vary

« and use techniques that ensure that the stable part — well
— remain stable

* These techniques are 1st and 2nd principle
— most of the time ©

CS@AU Henrik Baerbak Christensen 32



/v

AARHUS UNIVERSITET

The Principles In Action

CS@AU Henrik Baerbak Christensen
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eV Principles in action
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« Applying the principles lead to basically the same
structure of most patterns:
— New requirement to our client code

Client
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« Applying the principles lead to basically the same

Principles in action

structure of most patterns:

@ Consider what should be variable

Client

CS@AU

Variability

Henrik Baerbak Christensen
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« Applying the principles lead to basically the same

Principles in action

structure of most patterns:

« O Program to an interface

Client

CS@AU

«interface»
Variability

Henrik Baerbak Christensen
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eV Principles in action
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« Applying the principles lead to basically the same

structure of most patterns:

« @ Favor object composition

Client K

-
—
—
—
——
—
—

«interface»

ConcreteVariationl

Variability
a

ConcreteVariation2




/v And that is why...
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* ... most patterns follows this structure exactly
— They encapsulate variability and favor composition

«interface»
Variability
AN

Client K

ConcreteVariationl ConcreteVariation2
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® We identified some
behaviour that was likely to
change...

@® We stated a well defined
responsibility that covers this
behaviour and expressed it in
an interface

@ Instead of performing
behaviour ourselves we
delegated to an object
Implementing the interface

Summary

® Consider what should be
variable in your design

@® Program to an interface, not
an implementation

@ Favor object composition
over class inheritance



VeV SOLID
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« A more well known set of principles than®® @, but states
more or less the same...

S The single-responsibility principle: "There should never be more than one rea-
son for a class to change." That is, encapsulate behavior in well-defined and
fine-grained roles; encapsulate what varies.

O The open—closed principle: "Software entities ... should be open for extension,
but closed for modification." That is, favor change by addition.

L The Liskov substitution principle: "Functions that use pointers or references to
base classes must be able to use objects of derived classes without knowing it."
That is, program to an interface.

[ The interface segregation principle: "Many client-specific interfaces are bet-
ter than one general-purpose interface.” That is, express behavior using fine-
grained roles.

D The dependency inversion principle: "Depend upon abstractions, [not] concre-
tions." That is, program to an interface, and favor object composition by depen-

dency injection.

CS@AU Henrik Baerbak Christensen 40



/v SOLID is Solid
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« An architectural style for large systems: Microservices
— Key architecture for Uber, Google, NetFlix, ...

« Lots of tooling, lots of architectural tactics, lots of design
doctrines to follow, but... Scale: Deployment

Builds / week Production deploys /

e Atthe core, itis..
— Design with high cohesion and low coupling
— Design according to SOLID
— Program to an interface, favor object composition
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