
Software Engineering

and Architecture

Compositional Design Principles

Gang of Four (GoF)

Erich Gamma, Richard Helm

Ralph Johnson & John Vlissides

Design Patterns – Elements of

Reusable Object-Oriented Software

Addison-Wesley, 1995.

(As CD, 1998)

First systematic software pattern

description.

CS@AU Henrik Bærbak Christensen 2

The most important chapter

• Section 1.6 of GoF has a section called:

• How design patterns solve design problems

• This section is the gold nugget section

• It ties the patterns to the underlying coding principles that

delivers the real power.

CS@AU Henrik Bærbak Christensen 3

Compositional Design Principles

CS@AU Henrik Bærbak Christensen 4

As the 3-1-2 process

CS@AU Henrik Bærbak Christensen 5

First Principle

CS@AU Henrik Bærbak Christensen 6

GoF’s 1st principle

• Program to an interface, not an implementation

• In other words

• Assume only the role

• (the responsibilities + protocol)

• … and never allow yourself to be coupled to
implementation details and concrete behavior

CS@AU Henrik Bærbak Christensen 7

First Principle

• Program to an interface because

– You only collaborate with the role – not an individual object

– You are free to use any service provider class!

• Any class that implements that interface…

– You do not delimit other developers for providing their service

provider class!

– You avoid binding others to a particular inheritance hierarchy

• Which you would do if you use (abstract) classes…

CS@AU Henrik Bærbak Christensen 8

Example

• Early pay station GUI used JLabel for visual output

• I only use method: ’setText()’

CS@AU Henrik Bærbak Christensen 9

Example

• The I found SoftCollection’s number display, got

permission to use it, but...

... And use:

CS@AU Henrik Bærbak Christensen 10

Morale

• It would have been easy to make the code completely

identical, and thus support full reuse, in which I simply

configure PayStationGUI with the proper ’text panel’ to

use.

• But I cannot!

– Because LCDDigitDisplay does not inherit JLabel!!!

• Thus instead of dependency injection and change by

addition I get

• Change by modification

– I have to start my editor just to change one declaration!

– I can never get a framework out of this!

CS@AU Henrik Bærbak Christensen 11

Could have been solved…

• If JLabel was an

interface instead!

– Interface “IJLabel”

– setText(String s);

• Then there would be

no hard coupling to a

specific inheritance

hierarchy.

GUI IJLabel

JLabel

LCDDigitDisplay

CS@AU Henrik Bærbak Christensen 12

MyLCDDigitDisplay

Interfaces allow fine-grained behavioral

abstractions

• Clients can be very specific about the exact responsibility
it requires from its service provider – Role interfaces

• Example:
– Collections.sort(List<T> list)

– can sort a list of objects of any type, T, if each object implements
the interface Comparable<? super T>

– i.e. must implement method ‘int compareTo(T o)’.

• Low coupling – no irrelevant method dependency!

CS@AU Henrik Bærbak Christensen 13

SOLID : I = Interface Segregation

Interfaces better express roles

• Interfaces express specific responsibilities whereas

classes express concepts. Concepts usually include

more responsibilities and they become broader!

• Small, very well defined, roles are easier to reuse as you

do not get all the “stuff you do not need...”

CS@AU Henrik Bærbak Christensen 14

Second Principle

CS@AU Henrik Bærbak Christensen 15

GoF’s 2nd principle

• Favor object composition over class inheritance

• What this statement says is that there are basically two

ways to reuse code in OO!

And the compositional one should be favored!

CS@AU Henrik Bærbak Christensen 16

Benefits of class inheritance

• Class inheritance

– You get the “whole packet” and “tweak a bit” by overriding a

single or few methods

• Fast and easy (very little typing!)

• Explicit in the code, supported by language

– (you can directly write “extends”)

• But...

CS@AU Henrik Bærbak Christensen 17

Encapsulation

• “inheritance breaks encapsulation”

• Snyder (1986)

CS@AU Henrik Bærbak Christensen 18

Why?

• No encapsulation because

– Subclass can access every…

• instance variable/property

• data structure

• Method

– … of any superclass (except those declared private)

• Thus a subclass and superclass are tightly coupled

– You cannot change the root class’ data structure without

refactoring every subclass in the complete hierarchy 

CS@AU Henrik Bærbak Christensen 19

Only add responsibilities, never remove

• You buy the full package!

– All methods, all data structures

– Even those that are irrelevant or down right wrong!

CS@AU Henrik Bærbak Christensen 20

Example

• Vector<E> (= an ArrayList ‘almost’)

– void add(int index, E element)

• Stack<E> extends Vector<E>

– E pop()

– void push(E item)

Argue why this is a design with many liabilities?

How can you rewrite it elegantly using composition?
CS@AU Henrik Bærbak Christensen 21

Rewriting to Composition

• Class ‘Stack has-a Vector’, instead of ‘Stack is-a Vector’

– Much better design!

• Stack does not have any

Vector/List methods, only

push() and pop()

CS@AU Henrik Bærbak Christensen 22

Compile time binding

• The binding between Stack and Vector is a compile time

binding

– You write ‘extends’ in the code

– The only way to change behavior in

the future (tweak a bit more) is through

the edit-compile-debug-debug-

debug-debug cycle

CS@AU Henrik Bærbak Christensen 23

Loose binding

• The Compositional approach has a loose coupling

– [I have hardwired it to ArrayList below, but I could dependency

inject any other implementation

of List<String>!]

CS@AU Henrik Bærbak Christensen 24

Any implementing class of
List<String> can be substituted

here (by Dependency Injection),
thus no hard coupling between

Stack and “Vector”

Recurring modifications

• Constantly bubbling of behavior up into the root class in a

hierarchy

– Review the analysis in the State pattern chapter

• Another example

– Nice service based upon ArrayList

• Now – want better performance in new variant

– All three classes

modified 

CS@AU Henrik Bærbak Christensen 25

Separate Testing

• Often, small and well focused abstractions are easier to

test than large classes

– a) Only integration testing possible (NewS. + ExistS.)

– b) Allows unit testing of ‘ExistingService1+2’,

and often unit testing of NewService, by replacing collaborators

with Test Stubs ala StubService1 and StubService2

CS@AU Henrik Bærbak Christensen 26

Increase possibility of reuse

• Smaller implementations are easier to reuse

• Example from MiniDraw

– Sub responsibility

• Allow compositional reuse of FigureCollection in all

present and future impl. of Drawing!
CS@AU Henrik Bærbak Christensen 27

Liabilities

• Increased number of abstractions and objects 

• Delegation requires more boiler-plate code 

CS@AU Henrik Bærbak Christensen 28

(what is he saying???)

• Inheritance is an interesting construct, but

– It often leads to lesser designs 

• It does not elegantly handle

– ad hoc reuse

– modelling roles

– variance of behavior

CS@AU Henrik Bærbak Christensen 29

When to use Inheritance?

• My rule of thumb

– Iff there is behavioral differences between subclasses

• Not just parameters and constants; it must be different algorithms

– Iff you are absolutely sure there will be only one dimension of

variability and a shallow inheritance tree…

• Often, I later find I can rewrite inheritance…

– E2023

– E2024

• Gfx rendering difference is just a set of

parameters… See slides in Week 9 ☺…

CS@AU Henrik Bærbak Christensen 30

Third Principle

CS@AU Henrik Bærbak Christensen 31

GoF’s 3rd principle

• Consider what should be variable in your

design
• [GoF §1.8, p.29]

• Another way of expressing the 3rd principle:

• Encapsulate the behavior that varies

CS@AU Henrik Bærbak Christensen 32

Analysis

• This statement is closely linked to the shorter

• Change by addition, not by modification

• That is – you identify

– the design/code that should remain stable

– the design/code that may vary

• and use techniques that ensure that the stable part – well

– remain stable

• These techniques are 1st and 2nd principle

– most of the time ☺

CS@AU Henrik Bærbak Christensen 33

The Principles In Action

CS@AU Henrik Bærbak Christensen 34

Principles in action

• Applying the principles lead to basically the same

structure of most patterns:

– New requirement to our client code

Client

CS@AU Henrik Bærbak Christensen 35

Principles in action

• Applying the principles lead to basically the same

structure of most patterns:

•  Consider what should be variable

Client
Variability

CS@AU Henrik Bærbak Christensen 36

Principles in action

• Applying the principles lead to basically the same

structure of most patterns:

•  Program to an interface

Client
«interface»

Variability

CS@AU Henrik Bærbak Christensen 37

Principles in action

• Applying the principles lead to basically the same

structure of most patterns:

•  Favor object composition

Client
«interface»

Variability

ConcreteVariation1 ConcreteVariation2

CS@AU Henrik Bærbak Christensen 38

And that is why…

• … most patterns follows this structure exactly

– They encapsulate variability and favor composition

CS@AU Henrik Bærbak Christensen 39

Client
«interface»

Variability

ConcreteVariation1 ConcreteVariation2

Summary

•  We identified some

behaviour that was likely to

change…

•  We stated a well defined

responsibility that covers this

behaviour and expressed it in

an interface

•  Instead of performing

behaviour ourselves we

delegated to an object

implementing the interface

•  Consider what should be

variable in your design

•  Program to an interface, not

an implementation

•  Favor object composition

over class inheritance

CS@AU Henrik Bærbak Christensen 40

SOLID

• A more well-known set of principles than, but states

more or less the same…

CS@AU Henrik Bærbak Christensen 41

SOLID is Solid

• An architectural style for large systems: Microservices

– Key architecture for Uber, Google, NetFlix, …

• Lots of tooling, lots of architectural tactics, lots of design

doctrines to follow, but…

• At the core, it is..

– Design with high cohesion and low coupling

– Design according to SOLID

– Program to an interface, favor object composition

CS@AU Henrik Bærbak Christensen 42

Uber Data

