/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Compositional Design Principles

/v Gang of Four (GoF)

AARHUS UNIVERSITET

>

Erich Gamma, Richard Helm .
Ralph Johnson & John Vlissides DﬁSlgﬂ Pattems

Elements of Reusable
Objectl-Oriented Software

1
]
£
7
W
=
m
-

Design Patterns — Elements of Frich Gamina
. . ichard Helm o
Reusable Object-Oriented Software Ralph Johnsan :

John Vlissides

Addison-Wesley, 1995.
(As CD, 1998)

W
.
=
=1
e
=
o
]
m
=
e

First systematic software pattern

description. Fﬁ

CS@AU Henrik Baerbak Christensen 2

/v The most important chapter

AARHUS UNIVERSITET
 Section 1.6 of GoF has a section called:

« How design patterns solve design problems
* This section is the gold nugget section

|t ties the patterns to the underlying coding principles that
delivers the real power.

/v Compositional Design Principles

AARHUS UNIVERSITET

Compositional Design Principles:
@ Program to an interface, not an implementation.
@ Favor object composition over class inheritance.

@ Consider what should be variable in your design.

(or: Encapsulate the behavior that varies.)

CS@AU Henrik Baerbak Christensen 4

/v As the 3-1-2 process

AARHUS UNIVERSITET

CS@AU

@ [identified some behavior that
was likely to change. ..

@ | stated a well-defined respon-
sibility that covers this behavior
and expressed it in an interface. ..

@ Instead of implementing the be-
havior ourselves I delegated to
an object implementing the inter-
face. ..

@ Consider what should be variable
in your design.

@ Program to an interface, not an im-

plementation.

@ Favor object composition over class
imheritance.

Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET

First Principle

CS@AU Henrik Baerbak Christensen

/v GoF’s 1st principle

AARHUS UNIVERSITET
* Program to an interface, not an implementation

«interface»
ServiceProvider

Client

* |n other words
 Assume only the role
* (the responsibilities + protocol)

e ... and never allow yourself to be coupled to
Implementation details and concrete behavior

CS@AU Henrik Baerbak Christensen 7

/v First Principle

AARHUS UNIVERSITET

* Program to an interface because
— You only collaborate with the role — not an individual object

— You are free to use any service provider class!
* Any class that implements that interface...

— You do not delimit other developers for providing their service
provider class!

— You avoid binding others to a particular inheritance hierarchy
« Which you would do if you use (abstract) classes...

/v Example

AARHUS UNIVERSITET
« Early pay station GUI used JLabel for visual output

ublic class ParkingMachineGUI extends JFrams

E el - N . L || Parking Machine (c} Imh... [=N ﬁj
JLabkel displav:s
i Machin

Mant
lachine; indkast

1 kr

28 2 kr

5 Kr

* | only use method: 'setText() ™
N -

public woid updateDisplavy ()
disElay.setIext{ ""iparkingMachine.readDisplay ()) »
}

CS@AU Henrik Baerbak Christensen 9

/v Example

AARHUS UNIVERSITET

« The | found SoftCollection’s number display, got
permission to use it, but...

public class ParkingMachineGUI extends JFrams |

L) PayStation GUI | e ol=le ef e

Wariant Selection

"digital display
ICDDigitDisplay displav:
, domain pay static
PayStation pavStatlicn:

Leadings are shown */

e gul interacts with */

... And use:

F** TUpdate the digital display with whatewver the
payvy station domain shows */
private woid updateDisplaw () {
String prefixedZeros =
String.format{"%¥44", pavStation.readDisplav{) }r
displav.setText{ prefixedZfercs)

}

CS@AU Henrik Baerbak Christensen 10

eV Morale

AARHUS UNIVERSITET

|t would have been easy to make the code completely
identical, and thus support full reuse, in which | simply
configure PayStationGUI with the proper ‘text panel’ to
use.

 Butl cannot!
— Because LCDDigitDisplay does not inherit JLabel!!!

« Thus instead of dependency injection and change by
addition | get

 Change by modification

— | have to start my editor just to change one declaration!
— | can never get a framework out of this!

/v

eusuversrer | oould have been solved...

e |f JLabel was an
interface instead!

. i GUI lJLabel LCDDigitDisplay
— Interface “lJLabel

: - «interface»
Client — .
Service

AnotherService

— setText(String s); 7 = /
J Label Abs rracherv.fct'e ConcreteServiceC
* Then there would be ~ MyLCDDigitDisplay

no hard Coupling to a ConcreteéerviceA ConcreteServiceB
specific inheritance
hierarchy.

/v Interfaces allow fine-grained behavioral

AARHUS UNIVERSITET abstractions

« Clients can be very specific about the exact responsibility
it requires from its service provider — Role interfaces

o Example: SOLID : | = Interface Segregation

— Collections.sort(List<T> list)

public static «<T extends Comparable<? super T>> wvoid sort(List<T> list)

— can sort a list of objects of any type, T, if each object implements
the interface Comparable<? super T>

— i.e. must implement method ‘int compareTo(T o).

 Low coupling — no irrelevant method dependency!

CS@AU Henrik Baerbak Christensen 13

/v Interfaces better express roles

AARHUS UNIVERSITET

» Interfaces express specific responsibilities whereas
classes express concepts. Concepts usually include
more responsibilities and they become broader!

public interface Drawing extends

FigureCollection, SelectionHandler,
FigureChangelListener, DrawingChangelListenerHandler {

« Small, very well defined, roles are easier to reuse as you
do not get all the “stuff you do not need...”

public class CompositionalDrawing implements Drawing {
public CompositionalDrawing() {

selectionHandler = new StandardSelectionHandler():
listenerHandler = new StandardDrawingChangelistenerHandler();
figureChangelListener = new ForwardingFigureChangeHandler(source: this, listenerHandler);

figureCollection = new StandardFigureCollection(figureChangelListener);
CS@AU }

/v

AARHUS UNIVERSITET

CS@AU

Second Principle

Henrik Baerbak Christensen

15

/v GoF’s 2nd principle

AARHUS UNIVERSITET
* Favor object composition over class inheritance

 What this statement says is that there are basically two
ways to reuse code in OO!

And the compositional one should be favored!

ExistingService / EXistingService1
NewService)
q\:\
EXistingService2
NewService
a) b)

CS@AU Henrik Baerbak Christensen 16

eV Benefits of class inheritance

AARHUS UNIVERSITET
« Class inheritance

— You get the “whole packet” and “tweak a bit” by overriding a
single or few methods

« Fast and easy (very little typing!)

« Explicit in the code, supported by language
— (you can directly write “extends”)

 But...

/v Encapsulation
AARHUS UNIVERSITET

“Inheritance breaks encapsulation”

« Snyder (19806)

/v Why?
AARHUS UNIVERSITET
* No encapsulation because

— Subclass can access every...
* instance variable/property
* data structure
* Method

— ... of any superclass (except those declared private)

* Thus a subclass and superclass are tightly coupled

— You cannot change the root class’ data structure without
refactoring every subclass in the complete hierarchy ®

eV Only add responsibilities, never remove
AARHUS UNIVERSITET

* You buy the full package!
— All methods, all data structures
— Even those that are irrelevant or down right wrong!

/v Example

AARHUS UNIVERSITET

* Vector<E> (= an ArrayList ‘almost’)

— void add(int index, E element) public class Stack<E>
extends Vector<EX>

« Stack<E> extends Vector<E>
—~ E pop() o
— void push(E item) fiﬁ
Stack

Argue why this is a design with many liabilities?

How can you rewrite it elegantly using composition?
CS@AU Henrik Baerbak Christensen 21

/v Rewriting to Composition

AARHUS UNIVERSITET

e (Class ‘Stack has-a Vector’, instead of ‘Stack is-a Vector’
Much better design! '”‘Ej” j:"a'”t“': |
public class StackHasAVector
StaCk doeS not have any public static void maln(Strlng[] args} {

System.out.println('== 5t tor ==");

Vector/List methods, only stack s

s.push{"Item 1");
. h("Item 2");
push() and pop() < push(*Tten 3%).
System.out.println("” F e Llue (1 + s.pop());
System.out.println(" F e lue (2 + s.pop());
}
by

new Stack();

$ java StackHasAVector
== Stack has-a vector == class Stack {

EOMM1 H%ueggg =§$em§ // has-a vector (here ArraylList)
K private List<String= contents = new ArrayList<String=();

public void push(String item) {
contents.add(o, item);

}

public String pop() {
return contents.remove(}}
}
}

CS@AU Henrik Baerbak Christensen 22

/v Compile time binding

AARHUS UNIVERSITET
* The binding between Stack and Vector is a compile time
binding
— You write ‘extends’in the code public class Stack<E>
extends Vector<EX>

— The only way to change behavior in

the future (tweak a bit more) is through Vector
the edit-compile-debug-debug-
debug-debug cycle ‘%

Stack

CS@AU Henrik Baerbak Christensen 23

/v Loose binding

AARHUS UNIVERSITET

« The Compositional approach has a loose coupling
— [l have hardwired it to ArrayList below, but | could dependency

[import java.util.*;

inject any other implementation
Of LISt<Str|ng>!] publé:_class %tackl_igsA\r‘gc}:or{ 0 -

J - System.out.println(”== Stack has-a vector =="};
Stack s = new Stack();

s.push("Item 1");

s.push("Item 2");

Any implementing class of s.push("Iten 3):
8 8 8 System.out.println(” Popped value (1) = " + s.pop());
List<String> can be substituted system.out.println(* Popped value (2) - * + s.pop()):

}
}

here (by Dependency Injection),
thus no hard COUp“ng between \1775h:?:kvictor (here ArrayList)

StaCk and llVeCtorn private List<String> contents = new ArrayList<String=();

public wvoid push(String item) {
contents.add(o, item);
}

public String pop() {
return contents.remove(Q);
1
1

CS@AU Henrik Baerbak Christensen

24

/v

AARHUS UNIVERSITET

Recurring modifications

« Constantly bubbling of behavior up into the root class in a

hierarchy

— Review the analysis in the State pattern chapter

* Another example

— Nice service based upon ArrayList
 Now — want better performance in new variant

— All three classes
modified &

Client

Service

== ArrayList<ltem>

Client

AbsrtractService

doThings()

doThings()

/]
.'l
!

Service

NewsService

ArrayList<ltem>

TreeMap<K, ltem=>

doThings()

doThings()

b)

/v Separate Testing

AARHUS UNIVERSITET
 Often, small and well focused abstractions are easier to
test than large classes

ExistingService - ExistingService1

S

—

L" NewService

T ExistingService2
NewService

a) b)

— a) Only integration testing possible (NewS. + EXxistS.)

— b) Allows unit testing of ‘ExistingService1+2’,
and often unit testing of NewService, by replacing collaborators
with Test Stubs ala StubService1 and StubService2

/v Increase possibility of reuse

AARHUS UNIVERSITET
« Smaller implementations are easier to reuse
« Example from MiniDraw

Drawing

e Be a collection of figures.

e Allow figures to be added and removed.

e MVamtaln a temporary, possibly emptly, subset of all figures, called a
selection.

— Sub responsibility

public Figure add(Figure figure) { return figureCollection.add(figure); }

public Figure remove(Figure figure) { return figureCollection.remove(figure); }

« Allow compositional reuse of FigureCollection in all
present and future impl. of Drawing!

/v Liabilities

AARHUS UNIVERSITET
* Increased number of abstractions and objects ®

public CompositionalDrawing() {
selectionHandler = new StandardSelectionHandler();
listenerHandler = new StandardDrawingChangelistenerHandler();
figureChangelistener = new ForwardingFigureChangeHandler(source: this, listenerHandler);
figureCollection = new StandardFigureCollection(figureChangelistener);

}

« Delegation requires more boiler-plate code ®

Henrik Baerbak Christensen
@0verride

public Figure add(Figure figure) { return figureCollection.add(figure);

Henrik Basrbak Christensen

@0verride

}

public Figure remove(Figure figure) { return figureCollection.remove(figure); }

CS@AU Henrik Baerbak Christensen

28

/v

AARHUS UNIVERSITET

* Inheritance is an interesting construct, but

(what is he saying???)

— It often leads to lesser designs ®

* |t does not elegantly handle
— ad hoc reuse
— modelling roles
— variance of behavior

&

AN

A

2\

4

O~ %\

4

Dactar

NV

CS@AU

Henrik Baerbak Christensen

29

eV When to use Inheritance?

AARHUS UNIVERSITET
* My rule of thumb

— |Iff there is behavioral differences between subclasses
* Not just parameters and constants; it must be different algorithms

— Iff you are absolutely sure there will be only one dimension of
variability and a shallow inheritance tree...

e Often, | later find | can rewrite inheritance...

_ E2023 public abstract class hutStuneActurFigure extends CompositeFigure

implements HotStoneFiaure J
public class CardFigure extends HotStoneActorFigure

'public clLass hiniunFigure extends HotStoneActorFigure {

— E2024

public class CardFigure extends CompositeFigure

implements HotStoneFigure {

» Gfx rendering difference is just a set of
parameters... See slides in Week 9 ©...

CS@AU Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET

CS@AU

Third Principle

Henrik Baerbak Christensen

31

/v GoF’s 3rd principle

AARHUS UNIVERSITET

» Consider what should be variable in your

design
[GoF §1.8, p.29]

« Another way of expressing the 3rd principle:
* Encapsulate the behavior that varies

CS@AU Henrik Baerbak Christensen 32

Y Analysis

AARHUS UNIVERSITET
« This statement is closely linked to the shorter
« Change by addition, not by modification
« That is — you identify
— the design/code that should remain stable
— the design/code that may vary

« and use techniques that ensure that the stable part — well
— remain stable

* These techniques are 1st and 2nd principle
— most of the time ©

CS@AU Henrik Baerbak Christensen 33

/v

AARHUS UNIVERSITET

The Principles In Action

CS@AU Henrik Baerbak Christensen

34

eV Principles In action

AARHUS UNIVERSITET

* Applying the principles lead to basically the same
structure of most patterns:
— New requirement to our client code

Client

/v

AARHUS UNIVERSITET

* Applying the principles lead to basically the same

Principles In action

structure of most patterns:

« @ Consider what should be variable

Client

CS@AU

Variability

Henrik Baerbak Christensen

36

/v

AARHUS UNIVERSITET

* Applying the principles lead to basically the same

Principles In action

structure of most patterns:

« O® Program to an interface

Client

CS@AU

«interface»
Variability

Henrik Baerbak Christensen

37

eV Principles In action

AARHUS UNIVERSITET

* Applying the principles lead to basically the same
structure of most patterns:

* @ Favor object composition

«interface»

Client K

\h

ConcreteVariation1 ConcreteVariation2

/v And that is why...

AARHUS UNIVERSITET

* ... most patterns follows this structure exactly
— They encapsulate variability and favor composition

«interface»

Client K

\h

ConcreteVariation1 ConcreteVariation2

/v

AARHUS UNIVERSITET

® We identified some
behaviour that was likely to
change...

@® We stated a well defined
responsibility that covers this
behaviour and expressed it in
an interface

@ Instead of performing
behaviour ourselves we
delegated to an object
implementing the interface

Summary

® Consider what should be
variable in your design

® Program to an interface, not
an implementation

@ Favor object composition
over class inheritance

VeV SOLID

AARHUS UNIVERSITET

« A more well-known set of principles than® ® @, but states
more or less the same...

S The single-responsibility principle: "There should never be more than one rea-
son for a class to change." That is, encapsulate behavior in well-defined and
fine-grained roles| encapsulate what varies.

O The open—closed principle: "Software entities . .. should be open for extension,
but closed for modification.| That is, favor change by addition.

L The Liskov substitution principle: "Functions that use pointers or references to
base classes must be able to use objects of derived classes without knowing it."
That is{ program to an interface.

[The interface segregation principle: "Many client-specific interfaces are bet-
ter than one general-purpose interface.” That is, express behavior using fine-
grained roles.

D The dependency inversion principle: "Depend upon abstractions, [not] concre-
tions." That is, program to an interface, and favor object composition by depen-

dency injection.

CS@AU Henrik Baerbak Christensen 41

/v SOLID is Solid

AARHUS UNIVERSITET
* An architectural style for large systems: Microservices
— Key architecture for Uber, Google, NetFlix, ...

« Lots of tooling, lots of architectural tactics, lots of design
doctrines to follow, but... Scale: Deployment

cccccccccccccccccccc

* Atthe core, itis..
— Design with high cohesion and low coupling
— Design according to SOLID
— Program to an interface, favor object composition

CS@AU Henrik Baerbak Christensen 42

